If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-(34/25)x+(9/25)=0
Domain of the equation: 25)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
x^2-(+34/25)x+(+9/25)=0
We multiply parentheses
x^2-34x^2+(+9/25)=0
We get rid of parentheses
x^2-34x^2+9/25=0
We multiply all the terms by the denominator
x^2*25-34x^2*25+9=0
Wy multiply elements
25x^2-850x^2+9=0
We add all the numbers together, and all the variables
-825x^2+9=0
a = -825; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-825)·9
Δ = 29700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{29700}=\sqrt{900*33}=\sqrt{900}*\sqrt{33}=30\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{33}}{2*-825}=\frac{0-30\sqrt{33}}{-1650} =-\frac{30\sqrt{33}}{-1650} =-\frac{\sqrt{33}}{-55} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{33}}{2*-825}=\frac{0+30\sqrt{33}}{-1650} =\frac{30\sqrt{33}}{-1650} =\frac{\sqrt{33}}{-55} $
| X+12=y+12×5÷2 | | 3r-5=2r+4 | | x+x+x+x=18.4 | | ((x+3)5)/((4x/5)+3)=(11/9) | | ((x+3)5)/(4x/5+3)=(11/9) | | ((x+3)5)/(4x/5)=(11/9) | | (5x+3)/(4x+3)=11/9 | | 5x+3/(4x+3)=11/9 | | (2^3x-1)=100 | | 5×3y=9 | | 10c-4=2c+12 | | 20/4(1+3)=x | | 3a^2-34a+95=0 | | 7x–3=2x+5 | | 7y-4=32 | | 3x/4+6=-2 | | x=14.7 | | x-(22500+.25(x-140000))=200000 | | x-(50000+.3(x-250000))=200000 | | ×+7=6x-3 | | 35^2-18n-8=0 | | 3.5/28=10/x | | 0.2*0.1*x=12 | | 2(x+2)=4(x-1) | | 3(x+8)=96 | | −5x−3−2x=12−x | | x-1=15-3x-x | | x−1=15−3x−x | | d−1=15−3d−d | | (D^4+4D^3+14D^2+-20D+25)y=0 | | -x-7/5+7=3 | | 12-10x=122 |